Breast in vivo dosimetry by EPID
نویسندگان
چکیده
An electronic portal imaging device (EPID) is an effective detector for in vivo transit dosimetry. In fact, it supplies two-dimensional information, does not require special efforts to be used during patient treatment, and can supply data in real time. In the present paper, a new procedure has been proposed to improve the EPID in vivo dosimetry accuracy by taking into account the patient setup variations. The procedure was applied to the breast tangential irradiation for the reconstruction of the dose at the breast midpoint, Dm. In particular, the patient setup variations were accounted for by comparing EPID images versus digitally reconstructed radiographies. In this manner, EPID transit signals were obtained corresponding to the geometrical projections of the breast midpoint on the EPID for each therapy session. At the end, the ratios R between D(m) and the doses computed by the treatment planning system (TPS) at breast midpoints, D(m,TPS), were determined for 800 therapy sessions of 20 patients. Taking into account the method uncertainty, tolerance levels equal to ± 5% have been determined for the ratio R.The improvement of in vivo dosimetry results obtained (taking into account patient misalignment) has been pointed out comparing the R values obtained with and with-out considering patient setup variations. In particular, when patient misalignments were taken into account, the R values were within ± 5% for 93% of the checks; when patient setup variations were not taken into account, the R values were within ± 5% in 72% of the checks. This last result points out that the transit dosimetry method overestimates the dose discrepancies if patient setup variations are not taken into account for dose reconstruction. In this case, larger tolerance levels have to be adopted as a trade-off between workload and ability to detect errors, with the drawback being that some errors (such as the ones in TPS implementation or in beam calibration) cannot be detected, limiting the in vivo dosimetry efficacy.The paper also reports preliminary results about the possibility of reconstructing a dose profile perpendicular to the beam central axis reaching from the apex to the lung and passing through the middle point of the breast by an algorithm, similar to the one used for dose reconstruction at breast midpoint. In particular, the results have shown an accuracy within ± 3% for the dose profile reconstructed in the breast (excluding the interface regions) and an underestimation of the lung dose.
منابع مشابه
EPID in vivo Dosimetry
Introduction: The most modern radiotherapy devices are equipped with an Electronic Portal Imaging Device (EPID) system which is located on opposite side of the machine’s head. EPID system is often used to setting up the position verification during or between radiotherapy sessions. Material and Methods: Various types of dosimeters have been used to setting up ...
متن کاملAssessment of a 2D EPID-based Dosimetry Algorithm for Pre-treatment and In-vivo Midplane Dose Verification
Introduction: The use of electronic portal imaging devices (EPIDs) is a method for the dosimetric verification of radiotherapy plans both pretreatment and in-vivo. The aim of this study was to test a 2D EPID-based dosimetry algorithm for dose verification of some plans inside a homogenous and anthropomorphic phantom and in-vivo, as well. Materials and Methods: </strong...
متن کامل3D EPID-based in vivo dosimetry for IMRT and VMAT
In this paper the various approaches of EPID-based in vivo IMRT and VMAT dose verification, and their clinical implementation, are described. It will be shown that EPID-based in vivo dosimetry plays an important role in the total chain of verification procedures in a radiotherapy department. EPID-based dosimetry, in combination with in-room imaging, is a fast and accurate tool for 3D in vivo ve...
متن کاملEPID based in vivo dosimetry system: clinical experience and results
Mandatory in several countries, in vivo dosimetry has been recognized as one of the next milestones in radiation oncology. Our department has implemented clinically an EPID based in vivo dosimetry system, EPIgray, by DOSISOFT S.A., since 2006. An analysis of the measurements per linac and energy over a two-year period was performed, which included a more detailed examination per technique and t...
متن کاملIn vivo dose verification using using an amorphous silicon flat panel-type imager (a-Si EPIDs)
Introduction: Electronic portal imaging devices (EPIDs) could be used to dose verification of radiotherapy treatment plans. In vivo dose verification is performed to reduce differences found between dose delivered to the patient and the prescribed dose. The aim of this study was to perform a fast and efficient technique for the verification of delivered dose to the patient usin...
متن کامل